Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(8): 111254, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001965

RESUMO

Allosteric activation and silencing of leukocyte ß2-integrins transpire through cation-dependent structural changes, which mediate integrin biosynthesis and recycling, and are essential to designing leukocyte-specific drugs. Stepwise addition of Mg2+ reveals two mutually coupled events for the αXß2 ligand-binding domain-the αX I-domain-corresponding to allostery establishment and affinity maturation. Electrostatic alterations in the Mg2+-binding site establish long-range couplings, leading to both pH- and Mg2+-occupancy-dependent biphasic stability change in the αX I-domain fold. The ligand-binding sensorgrams show composite affinity events for the αX I-domain accounting for the multiplicity of the αX I-domain conformational states existing in the solution. On cell surfaces, increasing Mg2+ concentration enhanced adhesiveness of αXß2. This work highlights how intrinsically flexible pH- and cation-sensitive architecture endows a unique dynamic continuum to the αI-domain structure on the intact integrin, thereby revealing the importance of allostery establishment and affinity maturation in both extracellular and intracellular integrin events.


Assuntos
Integrina alfaXbeta2 , Cátions Bivalentes , Integrina alfaXbeta2/química , Integrina alfaXbeta2/metabolismo , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
2.
STAR Protoc ; 2(2): 100434, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33899016

RESUMO

Noninvasive immunoimaging holds great potential for studying and stratifying disease as well as therapeutic efficacy. Radiolabeled single-domain antibody fragments (i.e., nanobodies) are appealing probes for immune landscape profiling, as they display high stability, rapid targeting, and excellent specificity, while allowing extremely sensitive nuclear readouts. Here, we present a protocol for radiolabeling an anti-CD11b nanobody and studying its uptake in mice by a combination of positron emission tomography imaging, ex vivo gamma counting, and autoradiography. Our protocol is applicable to nanobodies against other antigens. For complete details on the use and execution of this protocol, please see Priem et al. (2020), Senders et al. (2019), or Rashidian et al. (2017).


Assuntos
Técnicas Imunológicas/métodos , Tomografia por Emissão de Pósitrons/métodos , Anticorpos de Domínio Único , Animais , Técnicas Histológicas , Camundongos , Imagem Molecular/métodos , Especificidade de Órgãos , Anticorpos de Domínio Único/análise , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
3.
Biomolecules ; 11(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925941

RESUMO

Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.


Assuntos
Diagnóstico por Imagem/métodos , Imagem Molecular/tendências , Anticorpos de Domínio Único/farmacologia , Diagnóstico por Imagem/tendências , Técnicas e Procedimentos Diagnósticos/tendências , Humanos , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Cintilografia/métodos , Cintilografia/tendências , Anticorpos de Domínio Único/metabolismo
4.
Nanotheranostics ; 5(1): 90-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391977

RESUMO

Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.


Assuntos
Imunoterapia , Neoplasias/terapia , Humanos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...